

Electromagnetic Fundamentals 2ndYear Communications (2016-2017)

Sheet 4

- 1 (a) What is meant by the divergence of a vector field ?
 - (b) Derive an expression to explain (a)
- 2 Determine the divergence of the following fields :

(a)
$$\bar{A} = x^2 \bar{a}_x + yz \bar{a}_y + xy \bar{a}_z$$

(b) $\bar{A} = r \sin \phi \bar{a}_r + 2r \cos \phi \bar{a}_{\phi} + 2z^2 \bar{a}_z$
(c) $\bar{A} = 5 \sin \theta \bar{a}_{\theta} + 5 \sin \phi \bar{a}_{\phi} \operatorname{at} \left(0.5, \frac{\pi}{4}, \frac{\pi}{4} \right)$

 $\begin{bmatrix} \nabla \cdot \overline{A} = 2x + z \\ \nabla \cdot \overline{A} = 4z \\ \nabla \cdot \overline{A}|_{\left(0.5, \frac{\pi}{4}, \frac{\pi}{4}\right)} = 24.142 \end{bmatrix}$

3 Show that the vector field $\overline{F} = e^{-y} (\cos x \, \overline{a}_x - \sin x \, \overline{a}_y)$ solenoidal. Explain from the point of view of source and sink existence.

 $[\nabla . \overline{F} = \mathbf{0}]$

4 If the electric field $\overline{E} = y\overline{a}_x + x\overline{a}_y$, show that the given region does not contain any electric charge.

 $[\nabla . \overline{E} = 0]$

5 Determine the net flux of the vector field $\overline{F} = r \,\overline{a}_r + \overline{a}_\phi + z \,\overline{a}_z$ leaving a cylindrical closed surface defined by r = 1, $0 \le \phi \le \pi$ and $0 \le z \le 1$. Then verify the divergence theorem.

6 Given that

$$\overline{D} = \left(\frac{10r^3}{4}\right)\overline{a}_r$$

in cylindrical coordinates , evaluate both sides of the divergence theorem for the volume enclosed by $r=1m\,$, $\,r=2m\,$, $\,z=0\,$ and $\,z=10m\,$

[**750** *π*]

- 7 If $\overline{F} = \left(\frac{5r^2}{4}\right)\overline{a}_r$ in a spherical coordinates . Verify the divergence theorem for the volume enclosed by r = 4 m and $\theta = \frac{\pi}{4}$ $\left[640 \pi \left[1 - \frac{1}{\sqrt{2}}\right] = 588.89\right]$
- 8 Verify the divergence theorem , if $\overline{F} = x\overline{a}_x + y\overline{a}_y + z\overline{a}_z$ for a cube with sides of 2m and its center is (1,1,1)

[24]